LCA as a Tool for Packaging Regulations Compliance

20 November 2025

by enhesa.

Welcome!

A warm welcome to this webinar from Chemical Watch Events & Training – by Enhesa.

We are part of Enhesa

Enabling businesses to create a more sustainable future.

Together.

Find out more...

- Visit our Enhesa Product Intelligence website and check out our membership offering
- Request an Enhesa Product Intelligence presentation and platform demo.

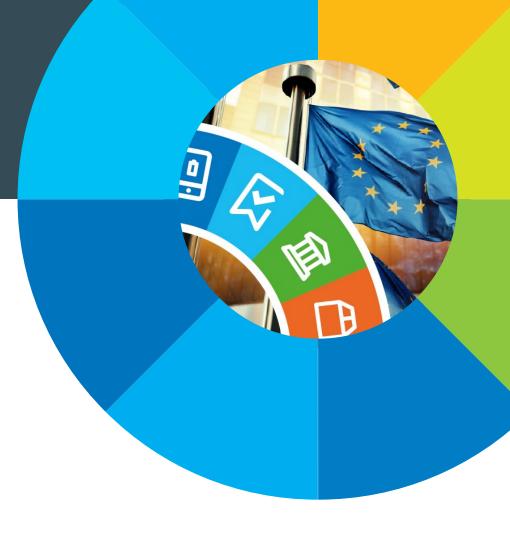
Visit enhesa.com/product-intelligence

by **enhesa**.

Regulatory Summit Europe 2026

20 - 23 April 2026 | Brussels + virtual

Essential updates on European regulations


Join Industry leaders and regulatory experts to explore the latest developments in chemical regulations across Europe. Attend all four days or select sessions most relevant to your business.

20-21 April – Regulatory developments on current and emerging issues for European chemicals management.

22 April – Practical solutions to ensure organizational compliance delivered by service providers

23 April – Legislative developments and hot topics shaping the future of chemicals management for electronics

23 April – Regulations and best practice for the safe and sustainable use of chemicals in packaging materials.

Speakers:

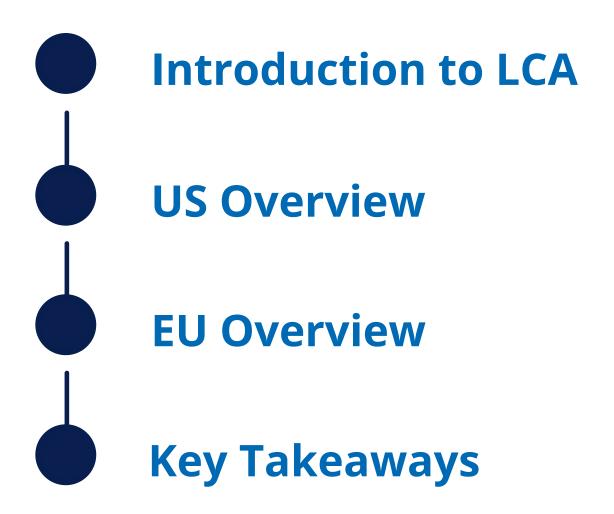
Elizabeth AverySustainability Consultant Manager, Trayak

Mitja Brgant
Director Europe Operations, Trayak

Katie GroteSenior Sustainability Consultant, Trayak

Topics

- Incorporation of PCR and design for recyclability in packaging
- Tradeoffs of material switching
- How packaging design aspects are being considered in regulations
- How life cycle analysis (LCA) can be used for evaluating sustainability strategies and various reportings



LCA and Its Use in Packaging Regulations

Mitja Brgant, Director Europe Operations Elizabeth Avery, Sustainability Consultant Manager Katie Grote, Senior Sustainability Consultant

Connect with us on LinkedIn!

Agenda

Trayak's vision is to help companies design and manufacture their entire portfolio using sustainable strategies.

Ecolmpact Sustainability Platform

COMPASS LCA **Carbon Accounting**

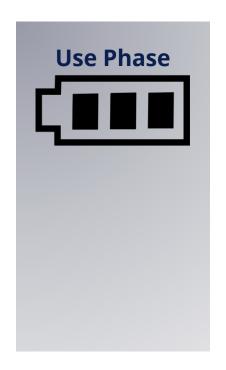
Scope 1 & 2 PCF Reporting

Sustainability Reporting

Scope 3
Reporting

EPR Fees

Sustainability Intelligence


What is Life Cycle Assessment (LCA)?

- LCA is a **standardized** and **reliable** method to calculate environmental impact
- Considers the entire **life cycle** of the product or package

Environmental Impacts of Packaging

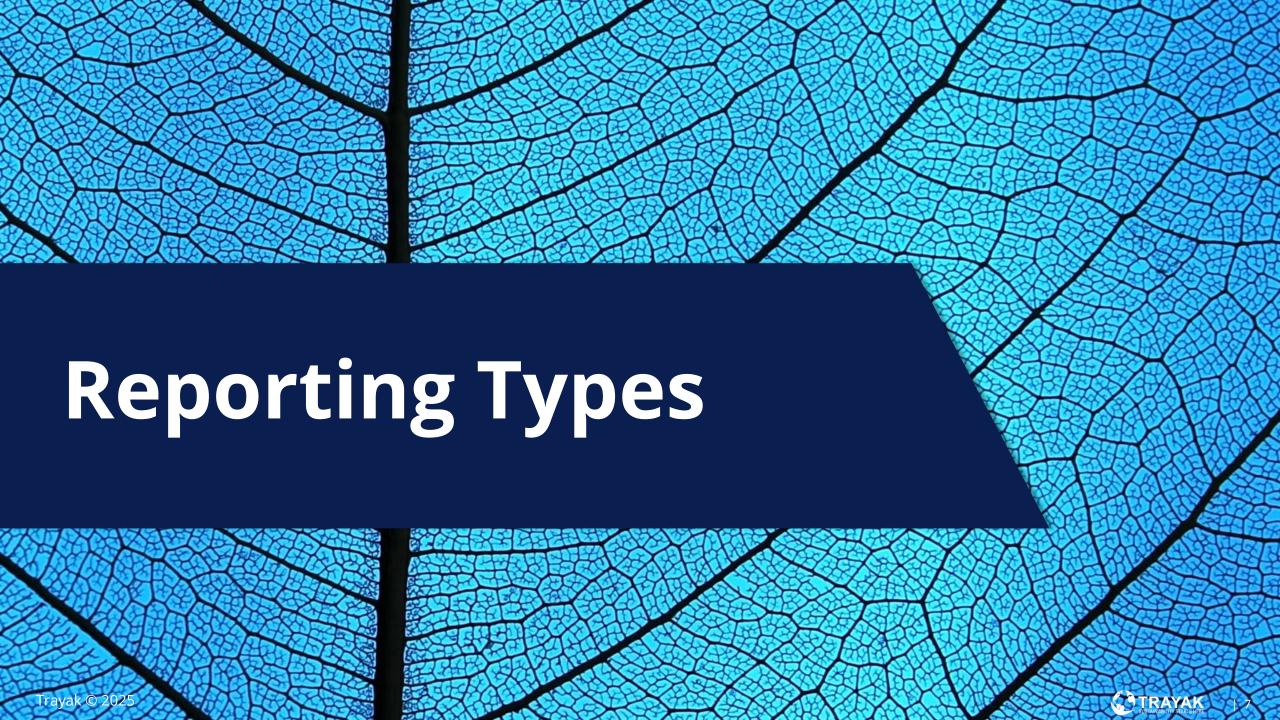
MATERIAL

- What is the material's environmental impact?
- Is the material abundant or in short supply?
- How do the Extended Producer Responsibility (EPR) fees compare to alternatives?

MANUFACTURING

- Does the conversion process impact water or air quality?
- How much waste is generated in the production of the package?
- Does the manufacturing process utilize renewable energy?

TRANSPORTATION


- What is the supply chain of the package?
- Where is the package being produced or sourced?

USE

- Are there any additives or coatings that are toxic to humans (i.e., PFAS, BPA)?
- Is a reuse system feasible?

END OF LIFE

- What happens to the package after its useful life?
- Is the package recyclable?

Holistic View versus Global Warming Potential (GWP)

Requirements in Reporting versus Total Environmental Perspective

GWP

Product Carbon Footprint

Scope 1, 2, & 3 reporting

Holistic Assessment Life Cycle Assessment (LCA)

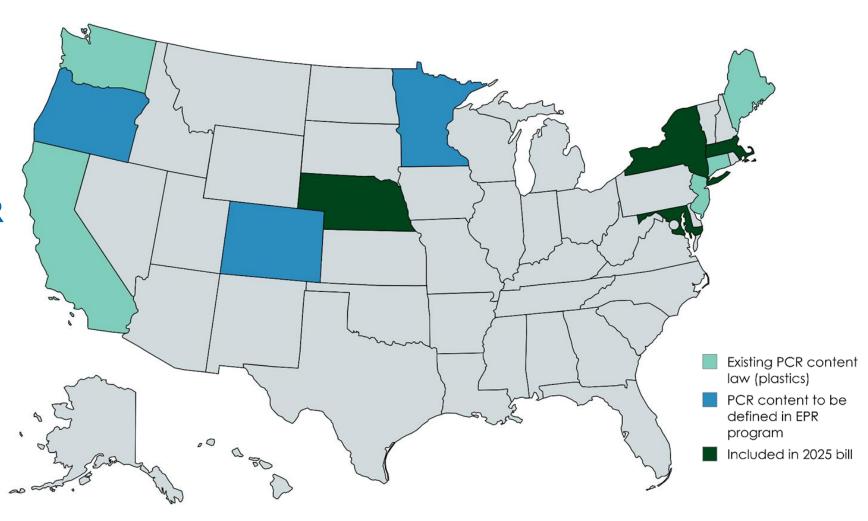
Environmental Product Declaration (EPD)

US Legislation

State legislation drives sustainable packaging improvements

Post-Consumer Recycled (PCR) Material Requirements

Chemicals of Concern (CoCs)


Single-Use Plastic Bans

Extended Producer Responsibility (EPR)

Incorporation of PCR

- PCR content **laws** in several states already
- May be defined in EPR programs
- Proposed in **bills** in several states

Created with mapchart.n

after https://plasticsrecycling.org/tools-and-resources/policy-hub/policy-priorities/recycled-plastic-content-requirements/

Incorporation of PCR

California

- Beverage bottles (glass and plastic)
- Rigid Packaging

- Reusable grocery bags (plastic)
- Trash bags

Washington

- Beverage bottles (plastic)
- Wine and dairy milk containers (plastic)
- Trash bags (plastic)

- Household cleaning and personal care (plastic)
- Reusable carryout bags

New Jersey

- Beverage containers (plastic)
- Rigid containers (plastic)

- Carryout bags (plastic)
- Trash bags (plastic)

Maine

Beverage containers (plastic)

Connecticut

Beverage containers (plastic)

© Trayak 2025

Spotlight: Single-Use Recyclability

Focusing on packaging characteristics that can increase recyclability can improve end-of-life dispositions for a format

Design for Recycling

Packaging characteristics compatible with:

- Recycling systems
- Recycling streams

Regional differences

Demand for recycled content

Recyclability

Packaging is recyclable if it can be:

Collected

Sorted

Reprocessed

Reused

Reach of collection can be wide or

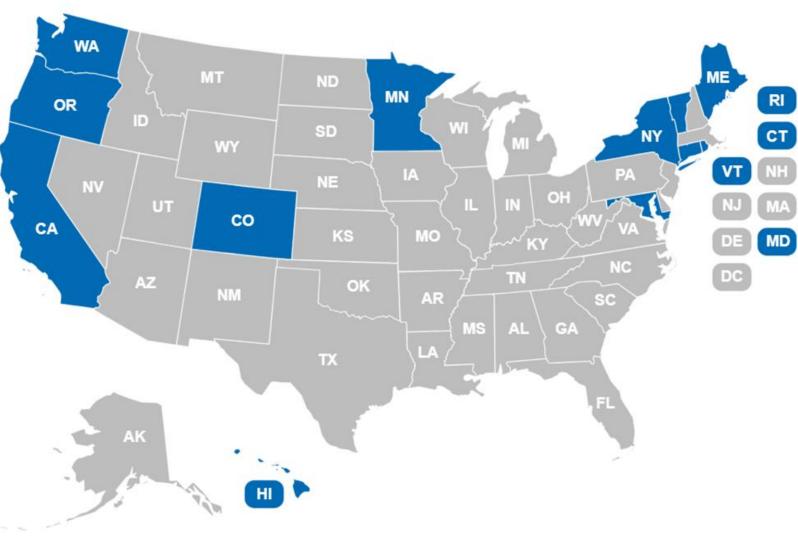
Take-back programs

limited

Recyclability labels

Extended Producer Responsibility (EPR) programs

GreenBlue, 2024 Beasley, 2025



Chemicals of Concern (CoCs)

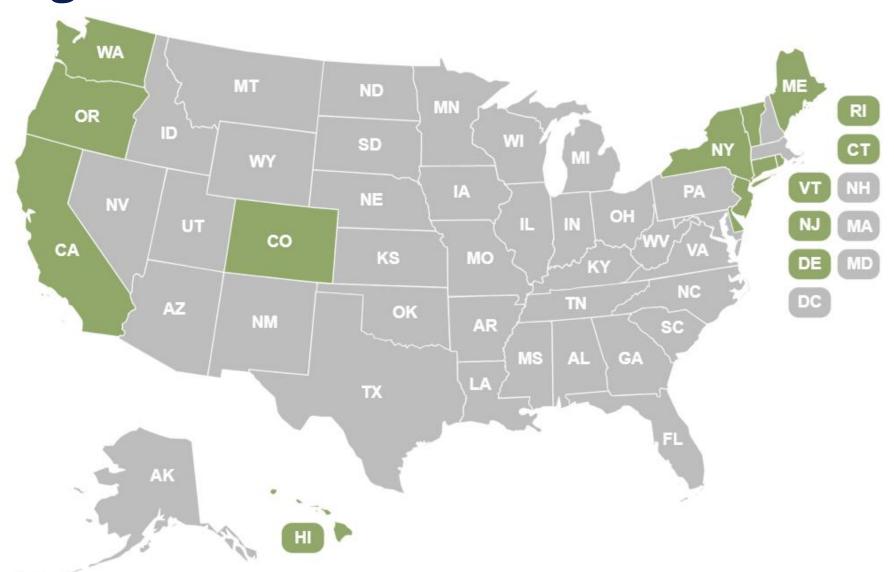
Packaging - Forever Chemicals

12 states have packaging bans on **PFAS** in food packaging

Map created on www.fla-shop.com based on data from (Hunter et al., 2023)

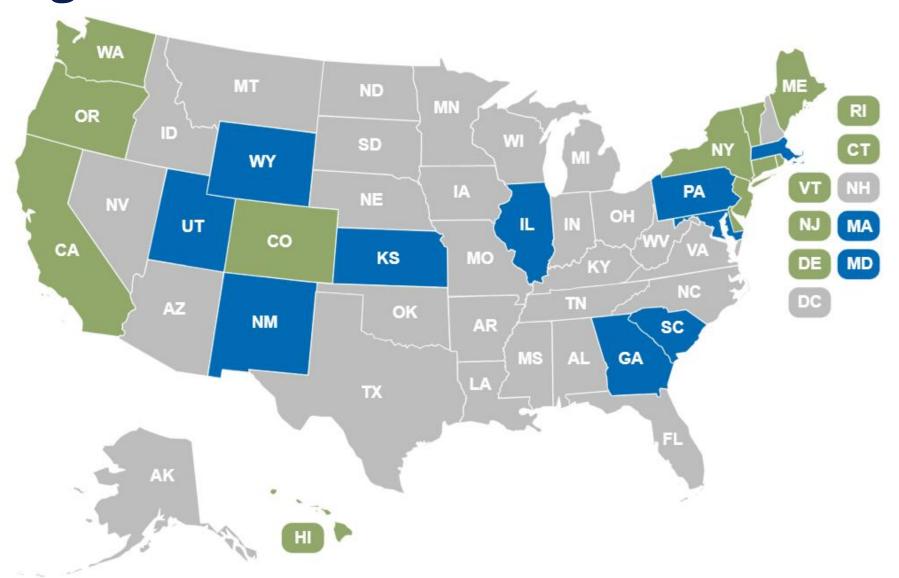
Overview

Most single-use plastic bans in the US focus on **plastic bags**.


A few local municipalities have other bans for things like straws and expanded polystyrene*.

Most bans have occurred in the last **10 years**, though some data back to as early as 2008*.

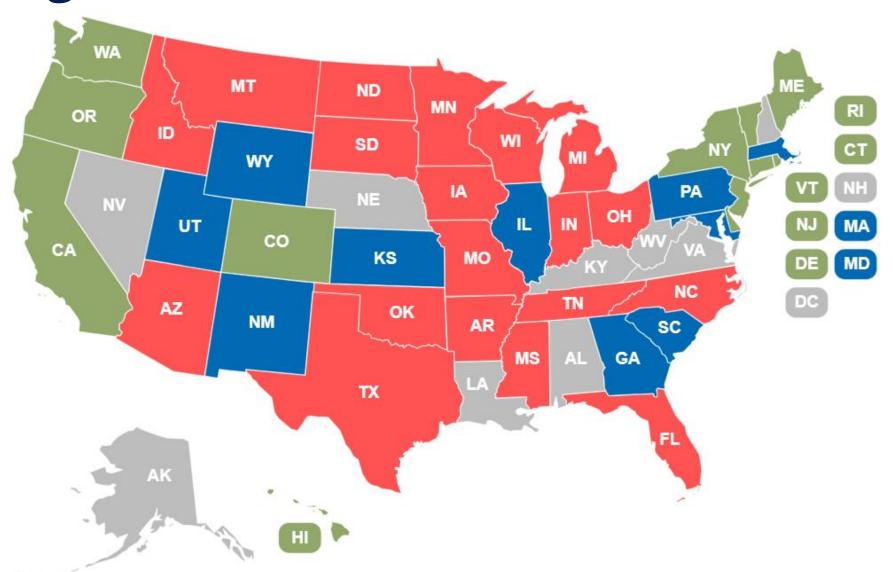
*(National Conference of State Legislatures, 2021)



Statewide Plastic Bans

Some Local Plastic Bans

Prohibition on local plastic bans



Statewide Plastic Bans

Some Local Plastic Bans

Prohibition on local plastic bans

Statewide Plastic Bans

Some Local Plastic Bans

Prohibition on local plastic bans

US EPR Regulations

Driving Change

Seven states with approved legislation plus nine states evaluating legislation in 2025

Legislation selects
the Producer
Responsibility
Organization (PRO)
who creates
reporting structures

Fees from EPR to support state circularity infrastructure

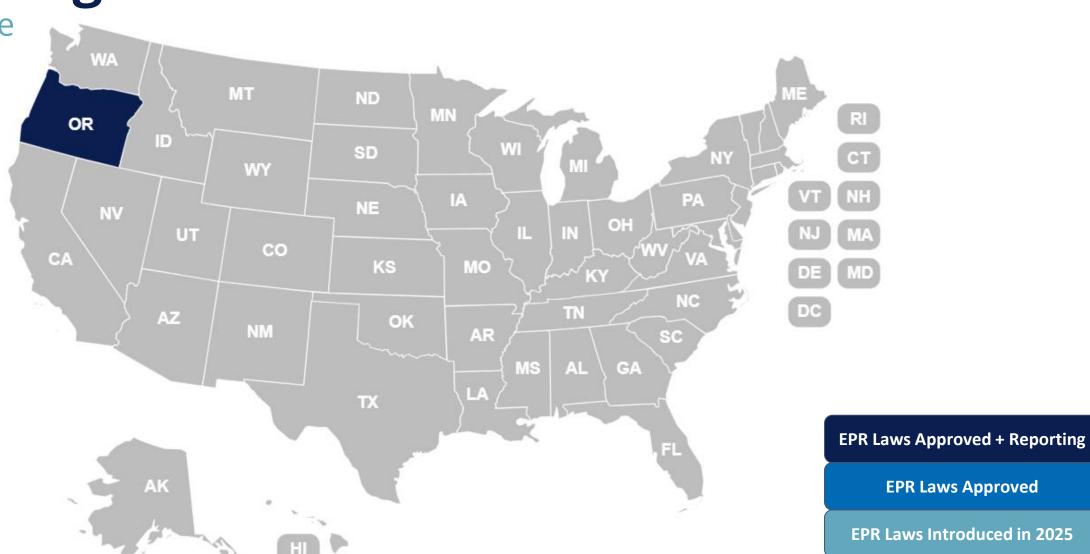
*(National Conference of State Legislatures, 2021)

EPR Regulations

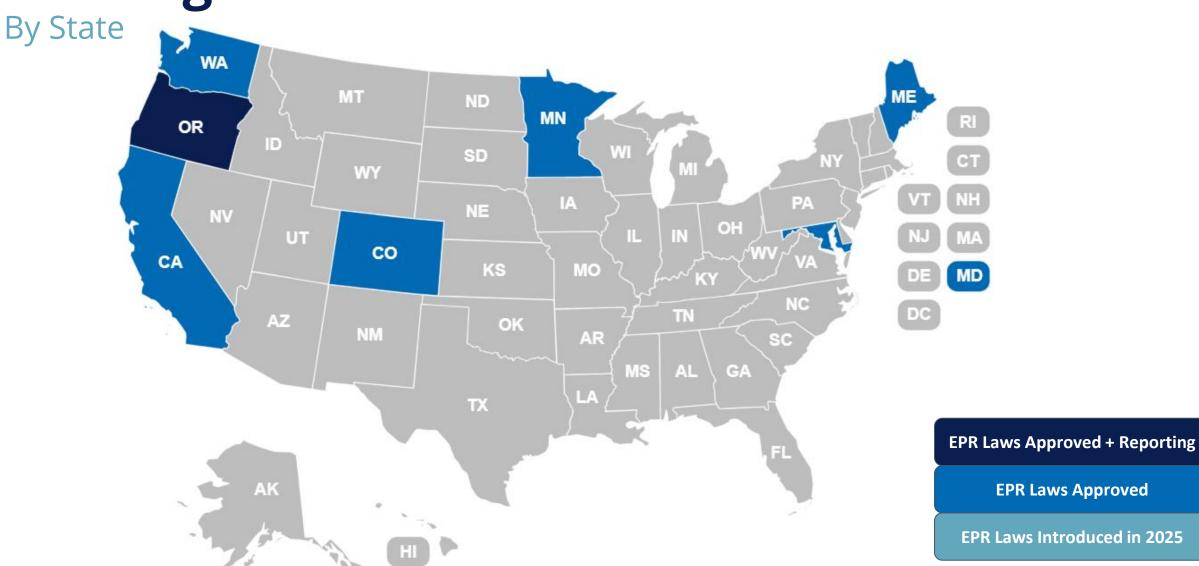
Reporting

State Sales Volume

Material

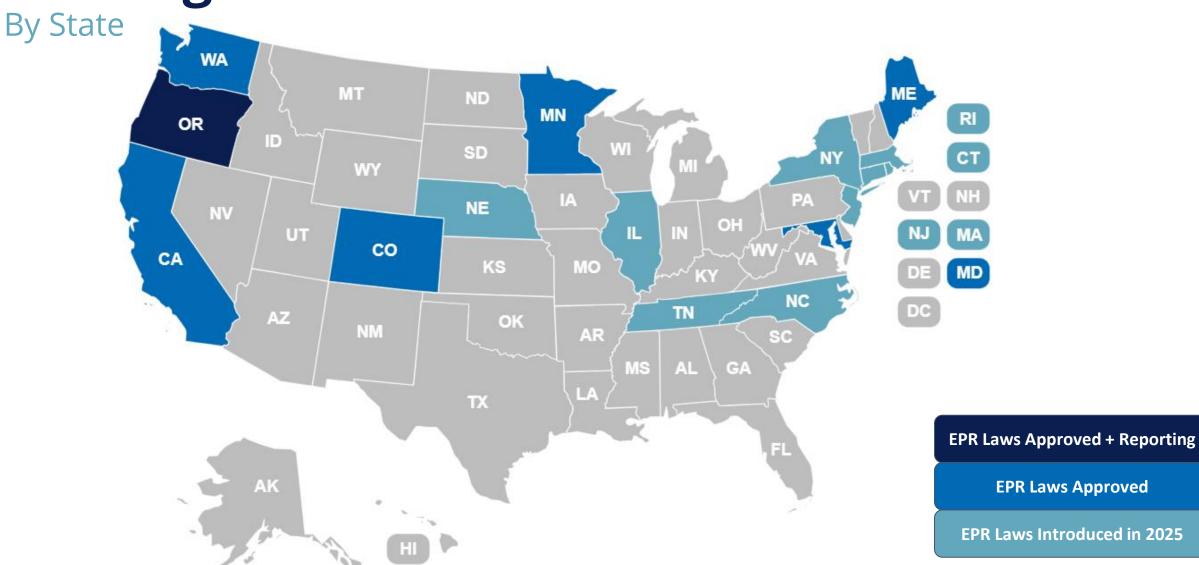

Weight

Structure


Color

EPR Regulations

By State



EPR Regulations

EPR Regulations

Oregon Eco-Modulation Bonuses

Bonus A

Performing and disclosing an LCA on primary packaging materials

Currently available

Bonus B

Comparative LCA to show a reduction in impact as a result of primary packaging improvements

Currently available

Bonus C

Comparative LCA to show a reduction in impact as a result of switching to reusable or refillable packaging

Available in 2026

Oregon Mandatory LCA Reporting

TOP 25 PRODUCER LCAs

Oregon's EPR Program will require the top 25 packaging producers in the state to provide LCAs on the top 1% of their SKUs

Mismanaged Waste Index (MWI)

Required for Oregon EPR LCA Reporting

Waste Produced in the Country

*includes imports and exports domestic product, and change of stock

Collected

*Through the formal waste collection system or informal sector

Uncollected *Excluding littering*

Littering

* Box sizes are not to scale

Adapted from Plasteax

Mismanaged Waste Index (MWI)

Required for Oregon EPR LCA Reporting

Waste Produced in the Country

*includes imports and exports domestic product, and change of stock

Collected

*Through the formal waste collection system or informal sector Domestic Recycling of Collected

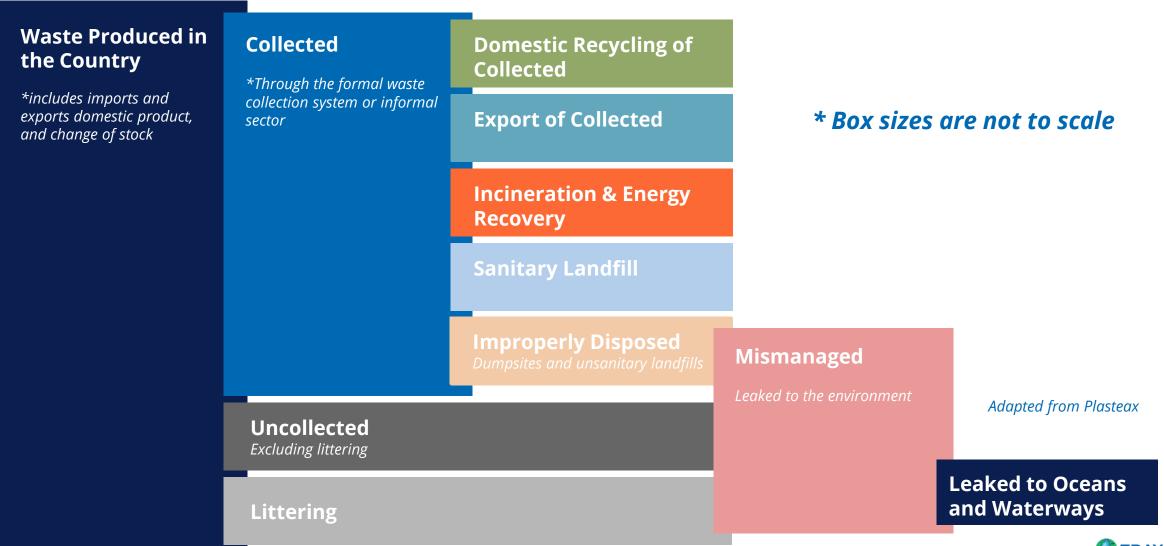
Export of Collected

Incineration & Energy Recovery

Sanitary Landfill

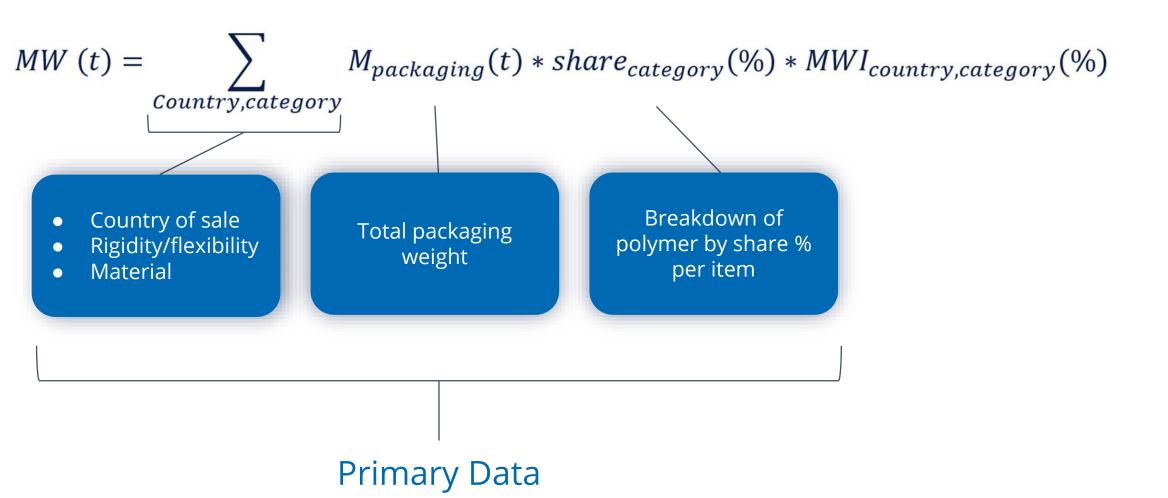
Improperly Disposed

Uncollected *Excluding littering*

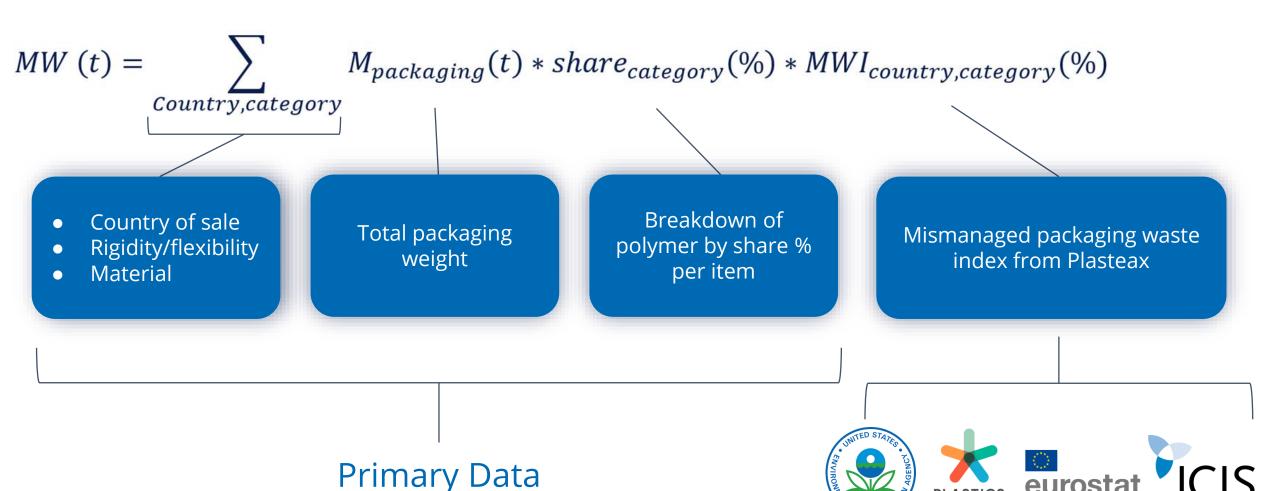

Littering

* Box sizes are not to scale

Adapted from Plasteax


Mismanaged Waste Index (MWI)

Calculating Mismanaged Waste


$$MW(t) = \sum_{Country, category} M_{packaging}(t) * share_{category}(\%) * MWI_{country, category}(\%)$$

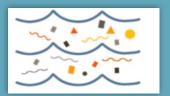
Calculating Mismanaged Waste

Calculating Mismanaged Waste

Required for Oregon EPR LCA Reporting

Calculating Plastic Leakage

$Leak_{compartment}(t) = MW(t) * RR_{compartment}(\%)$


		Ocean and	Terrestrial	Ocean and	Terrestrial	Ocean and	Terrestrial
		freshwater		freshwater		freshwater	
	Release Rate	Small Size (<	<5cm)	Medium Siz	e (5-25cm)	Large Size (>	>25cm)
	Matrix						
•	Low residual	40%	60%	25%	75%	5%	95%
	value						
	Medium	25%	75%	15%	85%	5%	95%
:	residual value						
	High residual	15%	15%	10%	5%	1%	1%
	value						

Adapted from PLP

Marine Impact in LCA (MarILCA)

 $\sum_{\textit{Leakage}_{\textit{compartment}}} \textit{Leakage}_{\textit{compartment}} * \textit{Midpoint CF}_{\textit{compartment.microplastic type}}$ microplastic type (polymer.shape.size)

Fate Factor

Environmental distribution and longevity

Measured in days

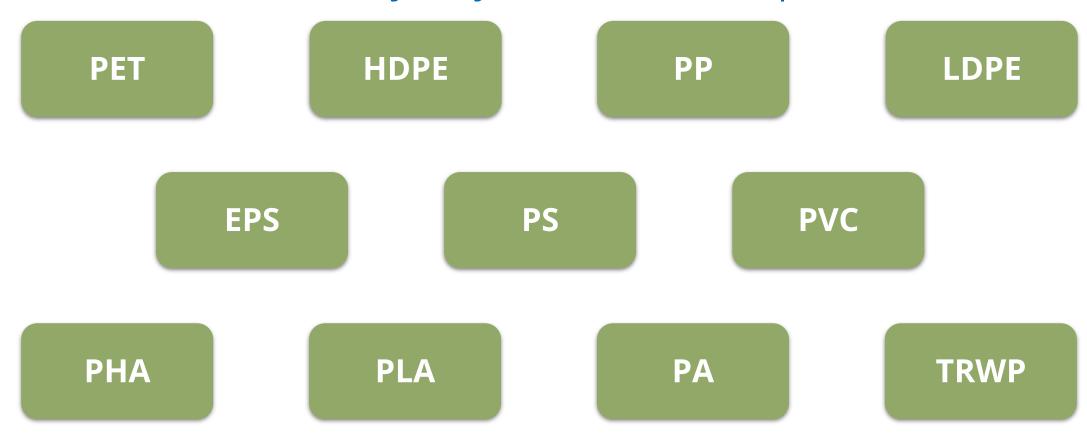
Exposure Factor

Amount of pollutant that is encountered

kg_{bioavailable} microplastic / kg_{microplastic} in compartment

Effect Factor

Concentration at which 10% of species are being impacted


PAF*m3/kg_{pollutant}

Adapted from Corella-Puertas (2023)

Limitations of MarILCA

MarILCA data is currently only available for 11 plastics:

Reusability

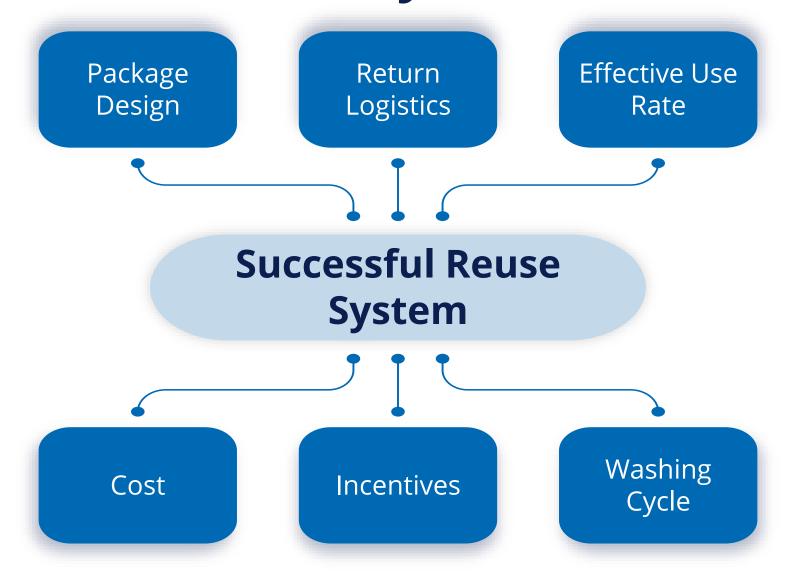
Single-Use versus Reusable

Single-Use

Less material

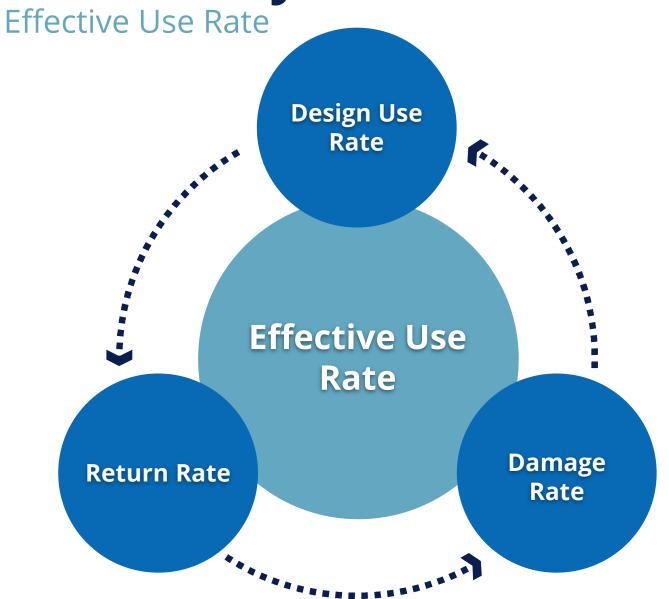
Lower initial impact

Less durable


Reusable

More material

Higher initial impact


More durable

Key Levers for Reuse Systems

Reusability

Design Use Rate of 100

Return Rate + Damage Rate	Effective Use Rate
50%	2.0
60%	2.5
70%	3.3
80%	5.0
85%	6.7
90%	10.0
95%	20.0
97.5%	37.0
99%	63.0

Adapted from (Kachook, 2022)

Sustainability in Europe

Navigating the maze of bureaucracy and abbreviations

EUROPEAN GREEN DEAL

CEAP – Action Plan for the Circular Economy

- Sustainable Products Initiative (SPI)
- EcoDesign for Sustainable Products Regulation (ESPR)
- Packaging and Packaging Waste Regulation (PPWR)
- Green Public Procurement (GPP)
- EU Taxonomy
- EU Ecolabel

- Corporate Sustainability Reporting Directive (CSRD)
- Battery Regulation
- Single-Use Plastics Directive
- Product Environmental Footprint (PEF)
- Organizational Environmental Footprint (OEF)
- ...

Sustainability in Europe

Environmental impact assessment methodologies

1. Life Cycle-Based Methodologies

- Life Cycle Assessment (LCA) (ISO 14040/44)
- Environmental Product Declaration (EPD) (LCA)
- Product Environmental Footprint (PEF) (LCA)

2. Footprint Approaches

- Carbon Footprint (CFP): (GHG) Scope 1 (direct), Scope
 2 (indirect energy), Scope 3 (supply chain / LCA)
- Water Footprint: (ISO 14046) (LCA)
- Material Footprint: Raw material extraction, consumption, circular economy assessments (LCA)
- Land and Biodiversity Footprint: Land occupation and biodiversity impact (LCA)

3. Indicator-Specific and Sector-Specific Methods

- Life Cycle Energy Assessment (LCEA)
- Material Flow Analysis (MFA)
- Social Life Cycle Assessment (S-LCA)
- Circularity Metrics (Material Circularity Indicator MCI)

EcoImpact COMPASS / PPWR

* * * * * * *

PPWR Primary Steps

Re-evaluate and Redesign Packaging for Recyclability and Reuse

Update Labeling and Ensure Transparency

Fulfill Extended Producer Responsibility (EPR)

Implement a Compliance Program

Ecolmpact COMPASS / PPWR

PPWR Review Steps

Re-evaluate and Update Labeling and Ensure Transparency

Harmonized Labels

2028 Target Material Composition Disposal Instructions (EU Pictograms)

Avoid "Greenwashing"

Strict Rules for Environmental Claims "Eco-Friendliness" MUST be Proven with Data Revision of All Marketing Claims

Digital Product Passport

PPWR coexistence with DPP Access to Information Wider Frame of Disclosures

EcoImpact COMPASS / PPWR

Fulfill Extended Producer Responsibility (EPR)

Financial Responsibility

Extended Producer Responsibility (EPR) Responsibility for Complete Life-Cycle Plan Before Place

Eco-modulated Fees

Usage of Recycled (PCR) content Simplification of Material Composition Design for ReUse & ReCycle

EcoImpact COMPASS / PPWR

Implement a Compliance Program

Audit and Assessment

Audit ALL Packaging

> Primary, Secondary & Tertiary Packaging
Identify Non-Compliant Materials & Designs

Supply Chain Collaboration

UpStream of Compliant Materials Correct & Appropriate Designs DownStream Management Protocol

Technical Documentation and Declarations

Declaration of Conformity

Maintain Technical Documentation

Access to Wide Scope of Documentation & Data

EcoImpact COMPASS / PPWR / Article 5

Minimize and Restrict Hazardous Substances

Hazardous Substances

Thorough Review to identify substances of concern, such as lead, cadmium, mercury, amongst others.

PFAS

Restrictions on Per- and Polyfluoroalkyl Substances (PFAS) in food-contact packaging.

Supplier Collaboration

Close work with UpStream chain to ensure materials in the value chain being compliant.

Ensure Packaging Does Not Impede Recycling

Chemical Compatibility with Recycling

Ensure that components can be easily separated to prevent the contamination of recycled base.

Evaluate Inks and Labels

Labels and Inks must be evaluated, without hazardous ingredients, and compliant for recyclability.

Ecolmpact COMPASS / PPWR / Article 5

Maintain Technical Documentation and Declarations of Conformity

Conduct Conformity Assessments

EVERY Packaging Placed in the EU Market must undergo Conformity Assessment.

Prepare a Declaration of Conformity

Based on the Assessment, EU Declaration of Conformity needs to be created and signed.

Maintain Technical Documentation

Detailed documentation related to the Assessment must be kept and provided upon request.

EcoImpact COMPASS / PPWR / Article 6

Specific Recycling Target percentages

Material	Threshold	Deadline
Recycled at scale – wood packaging	≥ 30% recycled annually	by 2030 & ongoing
Recycled at scale – all other packaging materials	≥ 55% recycled annually	by 2030 & ongoing
Recyclability performance class – min (Grade C)	≥ 70 % recyclability	from 1 Jan 2030
Recyclability perform class – higher (Grade A/B)	≥ 80 or 95 % recyclability	from 1 Jan 2038
Recycled content – PET contact-sensitive (non-bottle)	30% by 2030 → 50% by 2040	2030 / 2040
Recycled content – other plastic packaging	10% by 2030 → 50% by 2040	2030 / 2040
Recycled cont. – single-use plastic beverage bottles	X% by 2030 (30% noted) \rightarrow 65% by 2040	2030 / 2040
	•••	•••

Ecolmpact COMPASS / PPWR / Article 7

Specific PCR Content percentages

Identify & Categorize (Plastic) Packaging

Contact-sensitive > PET, other than PET,... Single-use packaging Other plastic packaging

Mandatory Recycled Content Targets

01/01/2030 30% for CSP if PET main component 10% if non-PET main component 35% for all other plastic packaging 01/01/2040 50% for CSP if PET main component 25% if non-PET main component 65% for all other plastic packaging

Find Exemptions

Packaging for medical devices and in vitro diagnostic medical devices, Packaging for dangerous goods, Compostable plastic packaging,..
Less 5% plastic packaging weight

Traceability and Documentation

Supplier Collaboration
Technical Documentation Maintenance

EcoImpact COMPASS / PPWR / Article 11

Reuse/Refill / B2B & Transport Packaging

Identify & Categorize (Plastic) Packaging

Single Use Pallets & Wrapping
Internal Returnable Packaging Systems
Intermediate Bulk Containers

Mandatory Reuse Targets

01/01/2030 40% of transport packaging must be reusable

01/01/2040 70% of transport packaging must be reusable

Implement Reusable Packaging System

Durability & Design Logistics Channels, Trace & Track Hygiene

Define Exemptions

Dangerous Goods
Flexible Packaging >>> Monitor other PPWRs' &
CEAP goals

EcoImpact COMPASS / PPWR / Article 12

Harmonized Mandatory Labeling / Aug 2028

Adopt Harmonized Labels

Artwork Updates Removal of Old Markings Visibility for End-users

Digital Marking for Substances of Concern

DPP Repository
Complete Disclosure
Internal & External
Documents

Transparency, no Greenwashing

Review Statements & Markings Analyze & Alternate Adopt or Remove Claims

Provide Information Digitally

QR code & Access Token DPP Repository API, xml, json,...

Ecolmpact COMPASS / PPWR / Annex VII

Extended Data Disclosure Frame with Unified Format Approach

Comprehensive Technical Documentation Repository

Detailed Packaging Description Information on the substances used Documentation on recyclability

Relevant tests & reports
Compliance with all PPWR articles

Internal Production Control System

Quality Management System Regular Audits Change Control

EU Declaration of Conformity – Draft & Sign

Legal Responsibility
Content of the Declaration

Maintain and Provide Documentation

Complete Compliance Documentation

Ecolmpact COMPASS / PPWR / Annex VIII

Standardized Declaration Template

Single Document or Set of Documents - Still in Review for Confirmation

Mandatory Elements

Packaging Identification

Manufacturer/Importer Information

Statement of Responsibility

Compliance with PPWR

References to Harmonized Standards

Details on Recycled Content

Date, Place, Validity, Title, Signature

Declaration Maintenance

Records

Accessibility

Retention

Languages

EcoImpact COMPASS / PPWR

EPR Fees

Material Utilization Details

Material	PCR %	PCR Mass	Mass
Container Glass	25 %	63,63 kg	254,54 kg
Corrugated	0 %	0 g	32,92 kg
Polypropylene (PP)	0 %	0 g	2,27 kg
Steel (unalloyed)	0 %	0 g	46,31 g
Steel	0 %	0 g	4,21 kg
Wood - Sawn hardwood, raw, air dried	0 %	0 g	3,1 kg
Wood - Sawn softwood, raw, air dried	0 %	0 g	616,33 g
Total	21,38 %	63,63 kg	297,7 kg

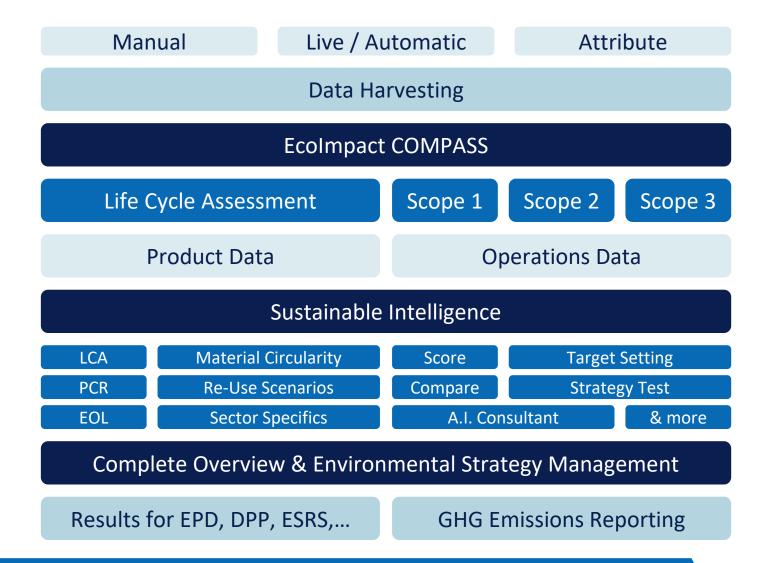
EcoImpact COMPASS / PPWR

EPR Fees

COUNTRY LEVEL

Material	Mass	EPR Fee	Eco Modulation	
Container Glass	254,54 kg	1.54 € cts/kg	Grade A	Reduced Fee
Corrugated	32,92 kg		Grade B	Base Fee
Polypropylene (PP)	2,27 kg		Grade C	Surcharge
Steel (unalloyed)	46,31 g			
Steel	4,21 kg			
Wood - Sawn hardwood, raw, air dried	3,1 kg			
Wood - Sawn softwood, raw, air dried	616,33 g			
Total	297,7 kg			

EcoImpact COMPASS / PPWR

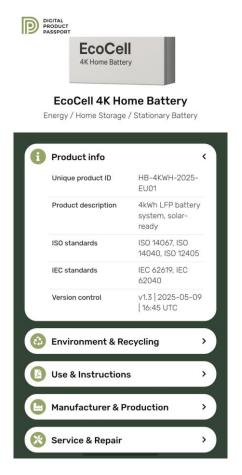

EPR Fees

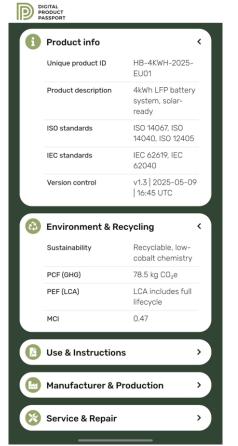
COUNTRY LEVEL

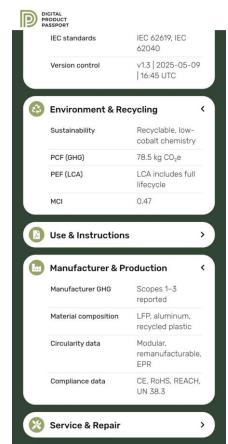
Material	Mass	EPR Fee	Eco Mo	odulation	Final Fee
Container Glass	254,54 kg	1.54 € cts/kg	Grade A	Reduced Fee	Weight (x) EPR Fee (-) EM (=) Final Fee
Corrugated	32,92 kg		Grade B	Base Fee	Weight (x) EPR Fee (=) Final Fee
Polypropylene (PP)	2,27 kg		Grade C	Surcharge	Weight (x) EPR Fee (+) EM (=) Final Fee
Steel (unalloyed)	46,31 g				
Steel	4,21 kg				
Wood - Sawn hardwood, raw, air dried	3,1 kg		CURRENTLY EU COUNTRIES HAVE DIFFERENT STRUCTURES & PROCESSES		
Wood - Sawn softwood, raw, air dried	616,33 g				
Total	297,7 kg				

Single Source of Truth

Future Proof Architecture


				Available
DATA	Verified DB	ERP, PLM,	LIVE DATA	Partners
		Future		
ANALYTICS	GHG	LCB	EPR	
	REPORTING	CONFORMITY	TRACKING	KNOWLEDGE
USABILITY	ESRS EPR GHG	ESG DPP PPWR	MATERIAL PRODUCT USAGE	Trainings Sharing
ACCESS	Digital Product Data	DPP REPOSITORY	Spec & Share	Al
SERVICES	CONSULTING	TRAINING	EXECUTING	MONITORING


Digital Product Passport



Minimum Requirements

- 01 Materials & Mass of the Materials
- 02 Manufacturing processes
- 03 Upstream data: location /material
- 04 Downstream data: location /product

Standards Mapping

Life Cycle Phase Mapping						
ISO 14024 (Ecolabel phases)	EN 15804 (EPD modules)	ISO 14040/44 (LCA stages)				
Raw material acquisition	A1 – Raw material supply	Goal & Scope: define functional unit and boundaries; Inventory: resource extraction (minerals, biomass, water, land use)				
Manufacturing & production	A2 – Transport to manufacturer	Inventory: energy inputs, emissions, waste from production processes				
Manufacturing & production	A3 – Manufacturing					
Packaging	Part of A3 (manufacturing)	Inventory: material use, waste, recyclability, emissions				
Distribution & logistics	A4 – Transport to site/market	Inventory: fuel use, emissions, transport modes				
Construction / installation (if relevant)	A5 – Installation into building	Inventory: installation energy, on-site waste, emissions				
	B1 – Direct use impacts					
	B2 – Maintenance	Impact assessment: emissions in use, energy/water demand, maintenance cycles; durability performance				
	B3 – Repair					
Use phase	B4 – Replacement					
	B5 – Refurbishment					
	B6 – Operational energy use					
	B7 – Operational water use					
	C1 – Deconstruction/demolition	Inventory & impact: recycling, energy recovery, landfill burdens				
End-of-life	C2 – Waste transport					
End-of-life	C3 – Waste processing					
	C4 – Disposal					
Bosses / wasselfing makes that	D – Beyond system boundary (credits from recovery, recycling,	Interpretation: allocation of avoided burdens, system				
Reuse / recycling potential	reuse)	expansion				

Process Standardization

Data Collection & Verification

Ecolmpact Process Standardization

Analysis & Strategy Testing

DPP Repository

Conclusions and Takeaways

- Globally, sustainable legislations are requiring more holistic environmental evaluations
- LCA follows a rigorous method to understand where improvements and tradeoffs can happen
- LCA is an iterative process
- Regulations use LCA to identify areas of improvement & assess impacts

References

Association of Plastic Recyclers. Recycled Plastic Content Requirements. https://plasticsrecycling.org/tools-and-resources/policy-hub/policy-priorities/recycled-plastic-plast

Beasley, J. (2025) Staying Ahead of the Curve: A 2025 Update on U.S. Packaging EPR and Packaging Legislation. https://www.repurpose.global/blog/2025-update-epr-packaging-legislation

Circular Action Alliance. https://circularactionalliance.org/

Corella-Puertas, E., Hajjar, C., Lavoie, J., & Boulay, A.-M. (2023). MarILCA characterization factors for microplastic impacts in life cycle assessment: Physical effects on biota from emissions to aquatic environments. *Journal of Cleaner Production, 418,* 138197.

Earth Action. (2023). Plasteax Methodology: Model Version 2.0 - Overview of data sources and Plasteax modeling. Plasteax.

Editable United States map. (n.d.). https://www.fla-shop.com/editor/usa/#ent_c_tab

GreenBlue. (2024) The How2Recycle Guide to Recyclability. https://greenblue.org/2024/01/04/the-how2recycle-guide-to-recyclability/

Hunter, J., Driggs, A., Margason, A., & Cloon, S. (2023, September 19). Unpacking PFAS food packaging regulations in the US. Packaging Digest.

https://www.packagingdigest.com/food-safety/unpacking-pfas-food-packaging-regulations-in-the-us

ISO. ISO 14040: Environmental management – Life cycle assessment – Principles and framework. Geneva: International Organization for Standardization. 2006a.

ISO. ISO 14044: Environmental management – Life cycle assessment – Requirements and guidelines. Geneva: International Organization for Standardization. 2006b.

Kachook, O. (2022). Guidance for Reusable Packaging (SPC). Sustainable Packaging Coalition.

Kristensson, J. (2025) What Is 'Design for Recycling' & Why Does It Matter for Packaging? https://www.greiner-gpi.com/en_US/Newsroom/Blog/What-Is-Design-for-Recycling-Why-Does-It-Matter-for-Packaging_s_360965

Mapchart. https://www.mapchart.net/usa.html

References

National Conference of State Legislatures. (2021, February 8). State Plastic Bag Legislation. https://www.ncsl.org/environment-and-natural-resources/state-plastic-bag-legislation

Oregon Department of Environmental Quality. Recycling and Waste Reduction: Scope and Applicability. 340-090-0910.

https://secure.sos.state.or.us/oard/viewSingleRule.action?ruleVrsnRsn=319716

Oregon Department of Environmental Quality. Recycling and Waste Reduction: Project Report. 340-090-0920.

https://secure.sos.state.or.us/oard/viewSingleRule.action?ruleVrsnRsn=319718

Oregon Department of Environmental Quality. Recycling and Waste Reduction: Core Product Category Rule. 340-090-0930.

https://secure.sos.state.or.us/oard/viewSingleRule.action?ruleVrsnRsn=319719

Plastic Footprint Network. (2024, July 24). *Module on impacts of microplastic leakage* [Pre-print]. Earth Action.

Plastic Footprint Network. (2024, October). *Module on macroplastic packaging* [Pre-print]. Earth Action.

Saadi, N., Lavoie, J., Fantke, P., Redondo-Hasselerharm, P., & Boulay, A.-M. (in preparation). Including microplastics and microfibers emissions impact in sediments in life cycle assessment. *Manuscript in preparation*.

Sustainable Packaging Coalition. (n.d.). Extended Producer Responsibility - SPC's guide. https://epr.sustainablepackaging.org/

Quantis & EA. (2020). Plastic Leak Project - Methodological Guideline (v1.1). Quantis & EA.

Contact Us

Mitja Brgant, mitja.brgant@trayak.com
Katie Grote, katie.grote@trayak.com
Elizabeth Avery, elizabeth.avery@trayak.com

LCA Trial Request

Contact Trayak

Find out more...

- Visit our Enhesa Product Intelligence website and check out our membership offering
- Request an Enhesa Product Intelligence presentation and platform demo.

Visit enhesa.com/product-intelligence

by **enhesa**.

Regulatory Summit Europe 2026

20 - 23 April 2026 | Brussels + virtual

Essential updates on European regulations

Join Industry leaders and regulatory experts to explore the latest developments in chemical regulations across Europe. Attend all four days or select sessions most relevant to your business.

20-21 April — Regulatory developments on current and emerging issues for European chemicals management.

22 April – Practical solutions to ensure organizational compliance delivered by service providers

23 April – Legislative developments and hot topics shaping the future of chemicals management for electronics

23 April – Regulations and practice for the safe and sustainable use of chemicals in packaging materials.

Thank you for attending!

The on-demand content of this presentation and slides will be available 7 working days after the session.

If you have any questions, please email: events@chemicalwatch.com

Selected upcoming events

TSCA Developments 2026

5 February | Virtual conference Book here

Food Contact Regulations Europe 2026

19 March | Virtual conference

Book here

Regulatory Summit Europe 2026

20-23 April | Brussels, Belgium + virtual Book here

Biocides Symposium 2026

19-20 May | Dusseldorf, Germany + virtual Book here

